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ABSTRACT

The application of Deep Learning (DL) techniques in paediatric neuroimaging marks a significant milestone in the field. Using
various DL methods, this study aims to provide a review of how these techniques can improve the diagnostic process for different
neurodevelopmental conditions, including Attention Deficit Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD).
The subsequent discussion addresses the prominent DL approaches applicable to paediatric neuroimaging and describes the
key datasets that serve as the foundation of scientific research in this area. Additionally, the study highlights the limitations and
shortcomings of these techniques, along with potential directions for future research and opportunities for further development. The
adoption of these advanced methods has the potential to significantly improve patient outcomes, enhance diagnostic accuracy,

and advance our understanding of early brain development.
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INTRODUCTION

Neuroimaging plays a crucial role in the study of brain function, as it
providesamodern, noninvasive means to examine both the structural
and functional aspects of the brain [1,2]. Neuroimaging methods
enable highly detailed visualisation of brain activity and structures,
contributing to a better understanding of how brain regions are
involved in cognitive and behavioural functions such as perception,
attention, memory, language processing, decision-making, and
emotion regulation [3]. The paediatric brain differs significantly
from the adult brain due to its distinct anatomical characteristics
and rapid developmental changes in structure, metabolism, and
function [4]. Diagnostic methods such as Electroencephalography
(EEG), Computed Tomography (CT), Magnetic Resonance Imaging
(MRI), and Positron Emission Tomography (PET) are essential tools
that facilitate timely clinical interventions [5].

Medical imaging is undergoing a transformation with the integration
of Artificial Intelligence (Al), which is enhancing patient care and
diagnostic precision [6]. Al has revolutionised imaging technology
by improving accuracy in detecting abnormalities and enabling
early treatment [6,7]. Among machine learning approaches, Deep
Learning (DL) stands out for its use of artificial neural networks to
process data efficiently. DL can extract complex features, detect
subtle patterns, and identify biomarkers that may go unnoticed by
human observers [5].

Early diagnosis and intervention are made possible by DL
algorithms, which can analyse brain scans to detect abnormalities
associated with ASD in children. DL also enhances diagnostic
accuracy by recognising brain activity patterns linked to ADHD
[5,7,8].

In this paper, authors review recent research on DL methods and
their application in diagnosing neurodevelopmental disorders.

DISCUSSION

The articles reviewed were systematically sourced from the
PubMed database. Publications from 2014 to 2025 were
considered, using key terms such as “Deep Learning (DL),” “Autism
Spectrum Disorder (ASD),” and “Attention Deficit Hyperactivity
Disorder (ADHD).” Only articles with relevant abstracts and titles
were included in the final review.
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Advanced DL Methods for Neuroimaging Assessment
The DL has significantly transformed the processes of image
analysis and classification through techniques such as Convolutional
Neural Networks (CNNs), transfer learning, autoencoders, Linear
Discriminant Analysis (LDA), and Generative Adversarial Networks
(GANS) [8,9].

Convolutional Neural Networks (CNNs): CNNs have become an
essential tool in medical image analysis and have revolutionised the
field of computer vision [10,11]. They process images efficiently
using structured data [5]. A typical CNN architecture comprises
three main layers: the convolutional layer, the pooling layer, and
the Fully Connected Layer (FCL). The convolutional layer serves as
the fundamental building block of any CNN [12]. The number of
convolutional layers should be optimised based on the specific task
to achieve the best performance [5]. The pooling layer plays a crucial
role in improving CNN performance by reducing dimensionality and
focusing on the most important features [5,13]. The FCL connects
every neuron in one layer to every neuron in the next, facilitating
feature integration and classification [14]. A specialised CNN
architecture, known as U-Net, has gained popularity for biomedical
image segmentation, particularly in paediatric neuroimaging. It
combines the strengths of CNNs with unique design elements that
enable accurate and context-aware segmentation [15].

Transform learning technique: The transform learning approach
integrates an encoder and a decoder while employing a self-attention
mechanism [5]. This mechanism- also referred to as intra-attention-
effectively connects different points within a sequence to determine
its representation, thereby enhancing the model’s understanding of
structural and contextual relationships [16].

Transfer learning technique: Transfer learning enhances the
performance of paediatric neuroimaging tasks by leveraging features
from models pre-trained on large datasets. It improves efficiency
by using data from different but related tasks or domains, thereby
reducing the cost and time required for training [17]. The process
typically involves two stages: feature extraction and fine-tuning.
Initially, the model is trained on a large neuroimaging dataset. For
optimal results, the learned features are then incorporated into a
new regression or classification model trained on the target dataset.
Fine-tuning specific parameters for a particular task allows the model
to adapt to the target domain, improving its predictive accuracy



Nilah Ans Chacko et al., Deep Learning in Neurodevelopmental Disorders

and ability to learn domain-specific features [18]. Transfer learning
has made it possible for models to generalise across paediatric
neuroimaging datasets. It is especially applicable when multicentre
investigations must combine data from multiple sources [5,19].

Autoencoder: Autoencoders have been applied to several imaging
tasks, including anomaly detection, dimensionality reduction, and
image denoising. The encoder network maps input data into a
lower-dimensional latent space, while the decoder reconstructs the
original input from this representation. During reconstruction, the
model learns to retain the most prominent features and structural
information of the input data [20]. The Deep Stacked Denoising
Autoencoder (DSDAE) is a robust denoising approach used
for anomaly detection and localisation [21]. Several studies
have demonstrated the potential of autoencoders in paediatric
neuroimaging. For example, convolutional autoencoders have
been used for dimensionality reduction of MRI data while preserving
essential structural information. Additionally, autoencoders have
been employed to identify brain abnormalities in MRI scans
of premature newborns, successfully detecting atypical brain
patterns [22].

Linear Discriminant Analysis (LDA): LDA is a powerful statistical
method widely used across multiple fields [23]. It is a supervised
classification technique that seeks a linear combination of
features that maximises the separation between different classes
within a dataset. By reducing high-dimensional data into a lower-
dimensional space, LDA simplifies classification while maintaining
class distinctions. This approach has proven valuable in improving
the diagnostic performance of various neurological disorder
studies by providing insights into patterns of neural activity and
connectivity [5,24]. For instance, LDA has been used to distinguish
between children with ASD and typically developing children
based on activity or connectivity patterns in specific brain regions
[25,26].

Generative Adversarial Networks (GANs): Generative Adversarial
Networks (GANSs) represent a revolutionary approach to generative
modelling and unsupervised learning. Introduced by lan Goodfellow
and colleagues in 2014, GANs have transformed Al and have been
widely applied in neuroimaging research [27,28]. In paediatric
neuroimaging, GANs have shown promising potential in data
augmentation [21], missing data imputation [29], and the generation
of synthetic brain images [30,31]. A GAN consists of two neural
networks- the generator (G) and the discriminator (D). The generator
learns the distribution of the input data and produces realistic
samples from random noise, while the discriminator evaluates
these outputs, distinguishing between generated and real samples
[27]. Through this adversarial process, GANs can generate artificial
brain images that closely resemble real brain structures and activity
patterns. By learning the underlying data distribution, GANs enable
the creation of synthetic brain images for research, expand dataset
diversity, and strengthen limited datasets for training [5].

Moreover, GANs are employed in image-to-image translation tasks,
such as brain lesion segmentation and conversion of T1-weighted
MRI images to T2-weighted images. Adversarial training ensures
that the translated data remain true to the original while providing
realistic, contextually coherent representations across imaging
modalities [32]. [Table/Fig-1] summarises the application of various
DL techniques [25,33-37].

Neurodevelopmental Disorders and Imaging Insights
a. DL-based neuroimaging for ASD

ASD is a neurodevelopmental condition that presents with a wide
range of symptoms, from mild to severe. Difficulties in social
communication and interaction often lead to challenges ininterpreting
non verbal cues, forming relationships, and expressing emotions.
Individuals with ASD may also exhibit repetitive behaviours and
restricted interests, such as repetitive movements or intense focus
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DL technique Application

Brain image segmentation, anomaly detection and

CNN classification of diverse types of tissues in the brain [33]

Enhancing the interpretability of complex brain imaging

Transform learning data and brain image segmentation [34]

Image segmentation and enhancing the interpretability of

Transfer leaming complex brain imaging data [35]

Anomaly detection, denoising images, and feature

Autoencoder extraction [36]
LDA Reduction of dimensions and classification of different
brain states and disease conditions [25]
Synthetic MRl images, augment datasets, and improve
GAN image quality by removing noise and enhancing resolution

(371

[Table/Fig-1]: Application of different DL techniques [25,33-37].

on specific objects [38]. MRI studies have revealed developmental
abnormalities in the brains of young children exhibiting behavioural
symptoms of ASD. These include alterations in temporal and frontal
lobe development, amygdala volume reduction, and decreased total
white and grey matter, all of which are more commmon in children with
ASD compared to their neurotypical peers. Recent functional MRI
(fMRI) studies further suggest that these neural differences provide
valuable biomarkers for identifying ASD in infants and toddlers when
compared to typically developing counterparts [39].

[Table/Fig-2] summarises DL techniques applied to neuroimaging
for ASD across various imaging modalities [40-52].

b. DL - based neuroimaging for ADHD

ADHD is a prevalent neurodevelopmental disorder characterised
by impulsivity, inattention, and hyperactivity. These symptoms
can significantly impact a child’s daily functioning and academic
performance [53]. To distinguish individuals with ADHD from healthy
controls, researchers employ multiple neuroimaging techniques
that analyse features such as brain volume, metabolism, white
matter connectivity, and functional activity. Key imaging modalities
include conventional MRI, MR spectroscopy, volumetric MRI,
Diffusion Tensor Imaging (DTI), functional MRI (fMRI), and voxel-
based morphometry, all of which provide critical insights into the
neurobiological characteristics of ADHD [54]. Furthermore, MR
spectroscopy offers valuable information about brain metabolism,
while fMRI effectively differentiates ADHD patients based on patterns
of brain activity [55,56].

[Table/Fig-3] summarises DL techniques used for neuroimaging in
ADHD across different imaging modalities [57-68].

c. DL based neuroimaging for other neurological conditions

Beyond ASD and ADHD, DL is increasingly being utilised to decode
the neurobiological complexity of other paediatric neurological
conditions- including epilepsy, cerebral palsy, and developmental
dyslexia- through advanced neuroimaging and predictive
modelling.

CNNs and Bidirectional Long Short-Term Memory (Bi-LSTM)
networks applied to EEG and MRI data have facilitated early seizure
detection, localisation of epileptogenic zones, and prediction of
surgical outcomes in epilepsy. Similarly, DL models analysing
infant movement videos and DTl scans have identified motor
dysfunction in cerebral palsy before clinical symptoms appear. In
developmental dyslexia, CNNs trained on fMRI and handwritten
task data have revealed altered activation patterns in reading-
related brain regions [69].

[Table/Fig-4] highlights the key DL techniques applied to
neuroimaging in various other neurological disorders [70-77].

Dataset for Paediatric Neuroimaging

Diverse and extensive medical imaging datasets are driving a major
transformation in paediatric neuroimaging. The Autism Brain Imaging
Data Exchange (ABIDE) preprocessed datasets are essential
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Data from the imaging
Author Year of publication | Country of publication modality DL model Conclusion
lidaka T rsfMRI The researchers found that PNN achieved
[40] 2015 China (resting state functional Probabilistic Neural Network (PNN) | about 90% accuracy in classifying the two
MRI) groups.
The multi-channel CNN method, combined
LiG et with patch-level data expansion, showed
al., [41] 2018 China MRI Multichannel CNN strong potential for early ASD detection,
v enabling timely interventions and improved
outcomes.
The model demonstrated improved
Aghdam accuracy, sensitivity, and specificity over
MA et al., 2019 Iran MRI CNNs and transfer learning ) Y ¥» and Specilicily ove
[42] earlier studies on the Autism Brain Imaging
Data Exchange (ABIDE) | dataset.
The study demonstrated impressive results,
achieving an average diagnostic accuracy of
Xiao Z et 2019 China MR CNN and Graph Neural Networks 96.26%, along with a sensitivity of 98.03%
al., [43] (GNN) and specificity of 93.62% while comparing
school-aged children with ASD with typically
developing individuals.
Sidhu G The classification accuracies have
[44] 2019 Canada MRI CNN confidently exceeded 80% across multiple
datasets.
Zhang This method effectively segmented small,
Detal, 2019 China MRI Dilated U net low-contrast structures and correlated
[45] strongly with amygdala overdevelopment.
Ahmed Achievement of 95.7% accuracy,
- 0 v/ [0} Hilet
MR et al., 2020 China NIRS Long Short-Term Memory (LSTM) 971 % 'sensnwlty, apq 94.3% specnﬁcny,l
[46] and CNN highlighting the promising potential of brain
activity studies for ASD.
xu L et The study demonstrated impressive
al., [47] 2020 China fNIRS LSTM and CNN classification accuracy, achieved a
v specificity of 94.3% and sensitivity of 97.1%
) - The KAML method clearly delivered
YinL et 2020 China fNIRS KAM!‘ (Kernel-based Addmve significant enhancements in prediction
al., [48] Mixed Model Learning).
accuracy.
Integrating conventional MRI and ADC data
Guo X et 2022 China MR CNN with DL algonthms offered a promising
al., [49] opportunity for the early and accurate
diagnosis of ASD in children.
Utilising the synergy of rs-fMRI and sMRI
Saponaro Feature Dimensionality information, the multimodal joint fusion
Setal, 2024 [taly rs-fMRI and sMRI Reduction neural network (FR-NN) strategy exceeded the classification results
[50] and CNN produced with data gathered by a single
MRI modality.
Ding Y et DL techniques demonstrated satisfactory
al ?51] 2024 China fMRI CNN and LSTM networks sensitivity, specificity, and Area Under the
v Curve (AUC) in ASD.
Sheik Demonstration of greater promise for
Abdullah 2025 India rs-fMRI LSTM, Bidirectional Long Short- diagnosing ASD, particularly in models that
Aetal, Term Memory (BiILSTM) and CNN | combined attention mechanisms with LSTM
[62] and BiLSTM networks.
[Table/Fig-2]: Definitive highlights of the DL techniques for neuroimaging in ASD [40-52].
Year of publica- Country of publi- Data from imaging
Author tion cation modality DL techniques Conclusion
. Deep Belief Network DBN model demonstrated impressive capability
Kuang D etal., [57] 2014 China MR (DBN) in accurately discriminating ADHD.
Fully Connected Cascade FCC ANN achieved nearly 90% accuracy in
Deshpande G et al., [58] 2015 USA fMRI Avrtificial Neural Network | distinguishing ADHD from healthy controls and
(FCC ANN) around 95% in differentiating ADHD subtypes.
DBN model effectively identified patterns
Hao AJ et al., [59] 2015 China MRI DBN associated with ADHD, demonstrating a high
level of classification accuracy.
Results indicated an accuracy of approximately
Chen H et al., [60] 2019 China EEG CNN 90.29%, confirming the effectiveness of CNN
for identifying ADHD.
Method utilising the public dataset from the
Mao Z et al., [61] 2019 China MRl Spatio-temporal DL ADHD-ZOO Consortium glegrly sur.passed.
method traditional approaches, achieving an impressive
accuracy of 71.3%.
Model excelled in distinguishing ADHD patients
Vahid A et al., [62] 2019 Germany EEG EEG Net from healthy controls, reaching a remarkable
accuracy of up to 83%.
Identification of key EEG features in ADHD
Dubreuil-Vall L et al., [63] 2020 USA MRI CNN patients, such as decreased alpha power and
increased delta-theta power.
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[Table/Fig-3]: Definitive highlights of DL techniques for neuroimaging in ADHD [57-68].

Study underscored the vital role of functional
Riaz A et al., [64] 2020 UK fMRI Deep fMRI connectivity in enhancing classification
accuracy and delivered interpretable results.

. . DNN model demonstrated exceptional
Garoia-Argibay M et al., 2023 Sweden Registry data Deep Neural Network discriminative ability, positioning it as a powerful
[65] (DNN) ) . e .

tool for improving decision-making.
The study emphasised the importance of
Taspinar G and Ozkurt 2024 Turkey rs-IMRI CNNs and DNNs examining all stages of ‘the process, such as
N [66] network and atlas selection, feature extraction,
and feature selection, before classification.
. CNN and Layer-Wise . .
Nouri A and Tabanfar . The proposed method achieved a high
Z[67] 2024 fran EEG Re'e"a”c(‘igg)’paga“on accuracy of 94.52% in diagnosing ADHD.
N\?:é?!)y&::ﬁzﬁés(g\?&?ﬁ The neural network, Random Forest classifier
Oyashi AS et al., [68] 2025 Bangladesh rs-fMRI ' and SVM achieved an accuracy of 97%, 50%
and a Random Forest o )
classifier and 83%, respectively.

Year of Country of Neurological Data from imaging
Author publication publication conditions modality DL techniques Conclusion
. Approach demonstrated considerable promise
Ceschin R et 2018 USA Cerebellar dysplasia SMA 3D CNN for the early identification of neurodevelopmental
al., [70] (structural MRI) I
disorders.
Zhang J et al 3D CNN-based approach showed significant potential
71] 9 N 2020 China Conduct disorder sMRI 3D CNN for classifying conduct disorder using structural MRI
data.
Zahia S et al Developmental 3D-CNNs accurately classified dyslexia using fMRI
[72] v 2020 Spain dyslexia Task MRI 3D CNN data, effectively distinguishing dyslexic individuals
from non dyslexic individuals.
Embrvonic The approach demonstrated efficacy in identifying
Attallah O et ry ends across a range of gestational ages and
2020 Egypt neurodevelopmental sMRI CNN S " ) .
al., [73] ; exhibited competitive performance relative to existing
disorder
methods.
’ . . sMRI, rsfMRI, Results indicated that the proposed approach can
Menon SS et 2021 USA D|srupt|ye behaviour Diffusion Tensor 3D CNN effectively identify children with Disruptive Behaviour
al., [74] disorder : .
Imaging (DTI) Disorders (DBDs).
ReNzuurrrslnt DL enabled predictive insights into brain development.
Scheinost D et Cognitive and motor Diffusion Tensor While models like CNNs and RNNs showed promise
2023 USA ; Networks . . o
al., [75] delays Imaging (DTI) (RNNs) and in forecasting cognitive and motor outcomes,
LSTMs challenges in data consistency.
Alkhurayyif Y . . .
and Sait ARW 2023 Saudi Arabia Dyslexia fMRI CNN The proposed model achieved an impressive
76] accuracy of 98.9% and an F1-score of 99.0%.
The study highlighted the limitations of current
approaches and underscores the importance of
Ortega-Leon A ) - - Multimodal data employing multimodal data models to improve
etal, [77] 2025 Spain Cognitive deficits MR modal early identification and intervention strategies for
Neurodevelopmental Impairments (NDls) in premature
infants.

[Table/Fig-4]: Definitive highlights of DL techniques for neuroimaging in other neurological disorders [70

resources for autism research, providing extensive neuroimaging
data of subjects diagnosed with ASD. However, a significant
limitation of ABIDE is the aggregation of data from multiple sites,
which use different scanners, acquisition parameters, and include
demographic variability. These site-specific effects introduce both
linear and non linear confounds, which can obscure or mimic
biological variations, leading to biased estimations and reduced
reliability of results [78].

Participant recruitment within ABIDE datasets is often not diverse,
with economic status, race, and ethnicity frequently underreported.
This demographic homogeneity can prevent disadvantaged
groups from benefiting from research and limits the generalisability
of findings, potentially reinforcing preconceptions about brain-
behaviour relationships [79,80]. Statistical biases, including inflated
effect sizes due to multiple measurements, subjective reporting, and
confounded parameters, can further affect neuroimaging studies
using ABIDE. Even with a relatively large dataset, the limited number
of cases at individual sites may reduce overall reliability [81,82].

ABIDE preprocessed datasets provide data that have undergone
a sequence of predetermined processing steps. They are available
for immediate analysis and include features such as connection

matrices, ROI time series, and quality control metrics. Although
ABIDE preprocessed datasets offer standardised and validated
data, the choice of preprocessing methods can influence final
results [83,84].

Similarly, the National Database for Autism Research (NDAR) is
a large repository of neuroimaging and ancillary data, facilitating
research on various aspects of autism [85]. However, differences
in technology and data collection procedures across multiple sites
introduce non biological variation, which can obscure or confound
signals of interest. These site effects are often so strong that scans
are best assigned to their original dataset, reflecting dataset-specific
biases [86,87].

If not adequately controlled, variables such as sex, age, and brain
size can render neuroimaging analyses inconclusive [82]. While
NDAR contains a vast overall dataset, the limited number of cases in
specific subgroups (e.g., particular ages, racial/ethnic populations,
or individual traits) compromises the strength and generalisability of
subgroup analyses [80,38].

As a premier resource for typically developing children and
adolescents, the Paediatric Imaging, Neurocognition, and Genetics
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Neurodevelopmental disorders Datasets Abbreviations Study description Data from imaging modality Reference
ABIDE Autism Brain Imaging Compiled structural and MRI [97]
Data Exchange (ABIDE) functional brain imaging data

to enhance knowledge of the
neural architecture

ABIDE Autism Brain Imaging Data underwent processing MRI [98]
ASD Preprocessed Data Exchange (ABIDE) by five distinct teams, each
Preprocessed employing a range of effective
tools.
NDAR National Database for Offered neuroimaging data MRI, fMRI, PET [85]
Autism Research related to autism, focusing on
its developmental aspects.
PING Paediatric Imaging, Longitudinal study Various neuroimaging [89]
Neurocognition, and incorporating a range of
Genetics (PING) neuroimaging data, with a
specific focus on data related
to ADHD.
ADHD
ADHD-200 Attention-Deficit Multimodal MRI data analysis Multimodal MRI [92]
Hyperactivity focussed on children
Disorder -200 diagnosed with ADHD in

comparison to their typically
developing peers.

[Table/Fig-5]: Highlights of brain medical image datasets used for neurodevelopmental disorder [85,89,92,97,98].

(PING) initiative provides researchers with critical insights into  The absence of standardised guidelines and protocols for DL in
normative brain development and cognitive maturation. However, as  paediatric neuroimaging is another major limitation. Variations in
a multisite study, PING may introduce variability due to differencesin = preprocessing and imaging protocols create inconsistencies in data
scanners and imaging techniques. If not adequately standardised,  acquisition and analysis, which can only be addressed through
these differences can complicate neuroimaging results. Being  uniform approaches. The lack of standard protocols also hampers
primarily cross-sectional, PING cannot establish causationregarding ~ comparability and reproducibility across studies, limiting the
changes in the brain over time or developmental trajectories.  development of reliable and generalisable DL models. Therefore,
Longitudinal data are needed to provide improved evidence of  the establishment of standard procedures is crucial to enhance the
growth processes [89]. utility and reliability of research in this field [99].

The size of connectomic studies is limited because some  Applying DL algorithms to paediatric neuroimaging also raises
modalities, such as advanced white matter connectivity measures,  serious privacy and ethical concerns. The analysis of sensitive
were not originally incorporated or processed, despite PING  medical data must be conducted in strict accordance with ethical
furnishing dense multimodal data [90]. It is challenging to correlate  principles and legal requirements to maintain patient confidentiality
neuroimaging results with intrinsic neurobiology, as imaging-  [100,101].

pased measurements cannot reliably reflect cellular or histological DL algorithms can efficiently process large and complex
characteristics [91]. datasets, uncovering hidden patterns inimaging data that may be
Additionally, the ADHD-200 dataset focuses on unique cerebral  overlooked by human observers. These algorithms can identify
patterns associated with ADHD, providing a rich repository of relationships between brain anatomy, functional properties, and
neuroimaging data for researchers studying this disorder [92].  responses to rehabilitation interventions, enabling the creation
The Adolescent Brain Cognitive Development (ABCD) study of highly personalised rehabilitation protocols tailored to each
substantially expands knowledge of brain development. Its child’s neurological profile. By optimising the use of therapeutic
large and heterogeneous dataset allows researchers to conduct ~ '©SCUrces, such interventions can be both effective and
comprehensive, long-term studies [93]. Although the ABCD panel efficient.

was intended to reflect the US population on key socio-demographic CONCLUSION (S)

measures, some subgroups were over- or underrepresented, limiting DL h Utionised diatr ) ) b i
the generalisability of findings [93,94]. Large datasets also pose risks, as revou |on|§§ paedia _”,C neulr0|.mag|.ng v prov !ng
unprecedented precision and efficiency in identifying and treating

including missing data and poor handling of missing information, , i i ,
J 9 P g g neurodevelopmental disorders in children. Advanced technologies

hich can distort results and reduce reproducibility [95]. Despite - . :
ek . l . . : . brodu .I ity (95] ”p| such as CNNs and GANs have significantly improved the detection

the richness of environmental and societal data in ABCD, additional ) . . o . .
of brain abnormalities, offering valuable insights into the anatomical

data are needed to establish best practices for conducting valid ) . , . )
) C and functional characteristics of the developing brain. Ultimately,
research and accounting for structural and systemic biases, such . . Lo . .
the integration of these technologies into clinical practice has the

as socio-economic health determinants and structural racism [96]. . . . ) .
potential to enhance the quality of care for paediatric patients, drive
[Table/Fig-5] represents the major brain imaging datasets used for  continued advancements, and ensure that these transformative

neurodevelopmental disorder research [85,89,92,97,98]. tools are fully realised in healthcare settings.
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