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INTRODUCTION
Neuroimaging plays a crucial role in the study of brain function, as it 
provides a modern, non invasive means to examine both the structural 
and functional aspects of the brain [1,2]. Neuroimaging methods 
enable highly detailed visualisation of brain activity and structures, 
contributing to a better understanding of how brain regions are 
involved in cognitive and behavioural functions such as perception, 
attention, memory, language processing, decision-making, and 
emotion regulation [3]. The paediatric brain differs significantly 
from the adult brain due to its distinct anatomical characteristics 
and rapid developmental changes in structure, metabolism, and 
function [4]. Diagnostic methods such as Electroencephalography 
(EEG), Computed Tomography (CT), Magnetic Resonance Imaging 
(MRI), and Positron Emission Tomography (PET) are essential tools 
that facilitate timely clinical interventions [5].

Medical imaging is undergoing a transformation with the integration 
of Artificial Intelligence (AI), which is enhancing patient care and 
diagnostic precision [6]. AI has revolutionised imaging technology 
by improving accuracy in detecting abnormalities and enabling 
early treatment [6,7]. Among machine learning approaches, Deep 
Learning (DL) stands out for its use of artificial neural networks to 
process data efficiently. DL can extract complex features, detect 
subtle patterns, and identify biomarkers that may go unnoticed by 
human observers [5].

Early diagnosis and intervention are made possible by DL 
algorithms, which can analyse brain scans to detect abnormalities 
associated with ASD in children. DL also enhances diagnostic 
accuracy by recognising brain activity patterns linked to ADHD 
[5,7,8].

In this paper, authors review recent research on DL methods and 
their application in diagnosing neurodevelopmental disorders.

DISCUSSION
The articles reviewed were systematically sourced from the 
PubMed  database. Publications from 2014 to 2025 were 
considered, using key terms such as “Deep Learning (DL),” “Autism 
Spectrum Disorder (ASD),” and “Attention Deficit Hyperactivity 
Disorder (ADHD).” Only articles with relevant abstracts and titles 
were included in the final review.

Advanced DL Methods for Neuroimaging Assessment
The DL has significantly transformed the processes of image 
analysis and classification through techniques such as Convolutional 
Neural Networks (CNNs), transfer learning, autoencoders, Linear 
Discriminant Analysis (LDA), and Generative Adversarial Networks 
(GANs) [8,9].

Convolutional Neural Networks (CNNs): CNNs have become an 
essential tool in medical image analysis and have revolutionised the 
field of computer vision [10,11]. They process images efficiently 
using structured data [5]. A typical CNN architecture comprises 
three main layers: the convolutional layer, the pooling layer, and 
the Fully Connected Layer (FCL). The convolutional layer serves as 
the fundamental building block of any CNN [12]. The number of 
convolutional layers should be optimised based on the specific task 
to achieve the best performance [5]. The pooling layer plays a crucial 
role in improving CNN performance by reducing dimensionality and 
focusing on the most important features [5,13]. The FCL connects 
every neuron in one layer to every neuron in the next, facilitating 
feature integration and classification [14]. A specialised CNN 
architecture, known as U-Net, has gained popularity for biomedical 
image segmentation, particularly in paediatric neuroimaging. It 
combines the strengths of CNNs with unique design elements that 
enable accurate and context-aware segmentation [15].

Transform learning technique: The transform learning approach 
integrates an encoder and a decoder while employing a self-attention 
mechanism [5]. This mechanism- also referred to as intra-attention-
effectively connects different points within a sequence to determine 
its representation, thereby enhancing the model’s understanding of 
structural and contextual relationships [16].

Transfer learning technique: Transfer learning enhances the 
performance of paediatric neuroimaging tasks by leveraging features 
from models pre-trained on large datasets. It improves efficiency 
by using data from different but related tasks or domains, thereby 
reducing the cost and time required for training [17]. The process 
typically involves two stages: feature extraction and fine-tuning. 
Initially, the model is trained on a large neuroimaging dataset. For 
optimal results, the learned features are then incorporated into a 
new regression or classification model trained on the target dataset. 
Fine-tuning specific parameters for a particular task allows the model 
to adapt to the target domain, improving its predictive accuracy 

Nilah Ans Chacko1, Nimmi Puthan Veedu2, Abhinav Panayan3, Sayali Satish Chodankar4



Keywords:	Attention deficit hyperactivity disorder, Autism spectrum disorder, Magnetic resonance imaging, 
Neuroimaging, Neurological conditions

ABSTRACT
The application of Deep Learning (DL) techniques in paediatric neuroimaging marks a significant milestone in the field. Using 
various DL methods, this study aims to provide a review of how these techniques can improve the diagnostic process for different 
neurodevelopmental conditions, including Attention Deficit Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD). 
The subsequent discussion addresses the prominent DL approaches applicable to paediatric neuroimaging and describes the 
key datasets that serve as the foundation of scientific research in this area. Additionally, the study highlights the limitations and 
shortcomings of these techniques, along with potential directions for future research and opportunities for further development. The 
adoption of these advanced methods has the potential to significantly improve patient outcomes, enhance diagnostic accuracy, 
and advance our understanding of early brain development.
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on specific objects [38]. MRI studies have revealed developmental 
abnormalities in the brains of young children exhibiting behavioural 
symptoms of ASD. These include alterations in temporal and frontal 
lobe development, amygdala volume reduction, and decreased total 
white and grey matter, all of which are more common in children with 
ASD compared to their neurotypical peers. Recent functional MRI 
(fMRI) studies further suggest that these neural differences provide 
valuable biomarkers for identifying ASD in infants and toddlers when 
compared to typically developing counterparts [39].

[Table/Fig-2] summarises DL techniques applied to neuroimaging 
for ASD across various imaging modalities [40-52].

b.	DL  - based neuroimaging for ADHD

ADHD is a prevalent neurodevelopmental disorder characterised 
by impulsivity, inattention, and hyperactivity. These symptoms 
can significantly impact a child’s daily functioning and academic 
performance [53]. To distinguish individuals with ADHD from healthy 
controls, researchers employ multiple neuroimaging techniques 
that analyse features such as brain volume, metabolism, white 
matter connectivity, and functional activity. Key imaging modalities 
include conventional MRI, MR spectroscopy, volumetric MRI, 
Diffusion Tensor Imaging (DTI), functional MRI (fMRI), and voxel-
based morphometry, all of which provide critical insights into the 
neurobiological characteristics of ADHD [54]. Furthermore, MR 
spectroscopy offers valuable information about brain metabolism, 
while fMRI effectively differentiates ADHD patients based on patterns 
of brain activity [55,56].

[Table/Fig-3] summarises DL techniques used for neuroimaging in 
ADHD across different imaging modalities [57-68].

c.	DL  based neuroimaging for other neurological conditions

Beyond ASD and ADHD, DL is increasingly being utilised to decode 
the neurobiological complexity of other paediatric neurological 
conditions- including epilepsy, cerebral palsy, and developmental 
dyslexia- through advanced neuroimaging and predictive 
modelling.

CNNs and Bidirectional Long Short-Term Memory (Bi-LSTM) 
networks applied to EEG and MRI data have facilitated early seizure 
detection, localisation of epileptogenic zones, and prediction of 
surgical outcomes in epilepsy. Similarly, DL models analysing 
infant  movement videos and DTI scans have identified motor 
dysfunction in cerebral palsy before clinical symptoms appear. In 
developmental dyslexia, CNNs trained on fMRI and handwritten 
task data have revealed altered activation patterns in reading-
related brain regions [69].

[Table/Fig-4] highlights the key DL techniques applied to 
neuroimaging in various other neurological disorders [70-77].

Dataset for Paediatric Neuroimaging
Diverse and extensive medical imaging datasets are driving a major 
transformation in paediatric neuroimaging. The Autism Brain Imaging 
Data Exchange (ABIDE) preprocessed datasets are essential 

and ability to learn domain-specific features [18]. Transfer learning 
has made it possible for models to generalise across paediatric 
neuroimaging datasets. It is especially applicable when multicentre 
investigations must combine data from multiple sources [5,19].

Autoencoder: Autoencoders have been applied to several imaging 
tasks, including anomaly detection, dimensionality reduction, and 
image denoising. The encoder network maps input data into a 
lower-dimensional latent space, while the decoder reconstructs the 
original input from this representation. During reconstruction, the 
model learns to retain the most prominent features and structural 
information of the input data [20]. The Deep Stacked Denoising 
Autoencoder (DSDAE) is a robust denoising approach used 
for anomaly detection and localisation [21]. Several studies 
have demonstrated the potential of autoencoders in paediatric 
neuroimaging. For example, convolutional autoencoders have 
been used for dimensionality reduction of MRI data while preserving 
essential structural information. Additionally, autoencoders have 
been employed to identify brain abnormalities in MRI scans 
of premature newborns, successfully detecting atypical brain 
patterns [22].

Linear Discriminant Analysis (LDA): LDA is a powerful statistical 
method widely used across multiple fields [23]. It is a supervised 
classification technique that seeks a linear combination of 
features that maximises the separation between different classes 
within a dataset. By reducing high-dimensional data into a lower-
dimensional space, LDA simplifies classification while maintaining 
class distinctions. This approach has proven valuable in improving 
the diagnostic performance of various neurological disorder 
studies by providing insights into patterns of neural activity and 
connectivity [5,24]. For instance, LDA has been used to distinguish 
between children with ASD and typically developing children 
based on activity or connectivity patterns in specific brain regions 
[25,26].

Generative Adversarial Networks (GANs): Generative Adversarial 
Networks (GANs) represent a revolutionary approach to generative 
modelling and unsupervised learning. Introduced by Ian Goodfellow 
and colleagues in 2014, GANs have transformed AI and have been 
widely applied in neuroimaging research [27,28]. In paediatric 
neuroimaging, GANs have shown promising potential in data 
augmentation [21], missing data imputation [29], and the generation 
of synthetic brain images [30,31]. A GAN consists of two neural 
networks- the generator (G) and the discriminator (D). The generator 
learns the distribution of the input data and produces realistic 
samples from random noise, while the discriminator evaluates 
these outputs, distinguishing between generated and real samples 
[27]. Through this adversarial process, GANs can generate artificial 
brain images that closely resemble real brain structures and activity 
patterns. By learning the underlying data distribution, GANs enable 
the creation of synthetic brain images for research, expand dataset 
diversity, and strengthen limited datasets for training [5].

Moreover, GANs are employed in image-to-image translation tasks, 
such as brain lesion segmentation and conversion of T1-weighted 
MRI images to T2-weighted images. Adversarial training ensures 
that the translated data remain true to the original while providing 
realistic, contextually coherent representations across imaging 
modalities [32]. [Table/Fig-1] summarises the application of various 
DL techniques [25,33-37].

Neurodevelopmental Disorders and Imaging Insights
a.	DL -based neuroimaging for ASD

ASD is a neurodevelopmental condition that presents with a wide 
range of symptoms, from mild to severe. Difficulties in social 
communication and interaction often lead to challenges in interpreting 
non verbal cues, forming relationships, and expressing emotions. 
Individuals with ASD may also exhibit repetitive behaviours and 
restricted interests, such as repetitive movements or intense focus 

DL technique Application

CNN
Brain image segmentation, anomaly detection and 
classification of diverse types of tissues in the brain [33]

Transform learning
Enhancing the interpretability of complex brain imaging 
data and brain image segmentation [34]

Transfer learning
Image segmentation and enhancing the interpretability of 
complex brain imaging data [35]

Autoencoder
Anomaly detection, denoising images, and feature 
extraction [36]

LDA
Reduction of dimensions and classification of different 
brain states and disease conditions [25]

GAN
Synthetic MRI images, augment datasets, and improve 
image quality by removing noise and enhancing resolution 
[37]

[Table/Fig-1]:	 Application of different DL techniques [25,33-37].
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Author Year of publication Country of publication
Data from the imaging 

modality DL model Conclusion

Iidaka T 
[40]

2015 China
rsfMRI

(resting state functional 
MRI)

Probabilistic Neural Network (PNN)
The researchers found that PNN achieved 
about 90% accuracy in classifying the two 

groups. 

Li G et 
al., [41]

2018 China MRI Multichannel CNN

The multi-channel CNN method, combined 
with patch-level data expansion, showed 
strong potential for early ASD detection, 

enabling timely interventions and improved 
outcomes.

Aghdam 
MA et al., 
[42]

2019 Iran fMRI CNNs and transfer learning

The model demonstrated improved 
accuracy, sensitivity, and specificity over 

earlier studies on the Autism Brain Imaging 
Data Exchange (ABIDE) I dataset.

Xiao Z et 
al., [43]

2019 China fMRI
CNN and Graph Neural Networks 

(GNN)

The study demonstrated impressive results, 
achieving an average diagnostic accuracy of 
96.26%, along with a sensitivity of 98.03% 
and specificity of 93.62% while comparing 

school-aged children with ASD with typically 
developing individuals.

Sidhu G 
[44]

2019 Canada fMRI CNN
The classification accuracies have 

confidently exceeded 80% across multiple 
datasets.

Zhang 
D et al., 
[45]

2019 China MRI Dilated U net
This method effectively segmented small, 

low-contrast structures and correlated 
strongly with amygdala overdevelopment.

Ahmed 
MR et al., 
[46]

2020 China fNIRS
Long Short-Term Memory (LSTM) 

and CNN 

Achievement of 95.7% accuracy, 
97.1% sensitivity, and 94.3% specificity, 

highlighting the promising potential of brain 
activity studies for ASD.

Xu L et 
al., [47]

2020 China fNIRS LSTM and CNN
The study demonstrated impressive 
classification accuracy, achieved a 

specificity of 94.3% and sensitivity of 97.1% 

Yin L et 
al., [48]

2020 China fNIRS
KAML (Kernel-based Additive 

Mixed Model Learning). 

The KAML method clearly delivered 
significant enhancements in prediction 

accuracy.

Guo X et 
al., [49]

2022 China MRI CNN

Integrating conventional MRI and ADC data 
with DL algorithms offered a promising 
opportunity for the early and accurate 

diagnosis of ASD in children.

Saponaro 
S et al., 
[50]

2024 Italy rs-fMRI and sMRI
Feature Dimensionality

Reduction neural network (FR-NN) 
and CNN

Utilising the synergy of rs-fMRI and sMRI 
information, the multimodal joint fusion 

strategy exceeded the classification results 
produced with data gathered by a single 

MRI modality.

Ding Y et 
al., [51]

2024 China  fMRI CNN and LSTM networks
DL techniques demonstrated satisfactory 
sensitivity, specificity, and Area Under the 

Curve (AUC) in ASD. 

Sheik 
Abdullah 
A et al., 
[52]

2025 India rs-fMRI
LSTM, Bidirectional Long Short-

Term Memory (BiLSTM) and CNN

Demonstration of greater promise for 
diagnosing ASD, particularly in models that 
combined attention mechanisms with LSTM 

and BiLSTM networks.

[Table/Fig-2]:	 Definitive highlights of the DL techniques for neuroimaging in ASD [40-52].

Author 
Year of publica-

tion
Country of publi-

cation
Data from imaging 

modality DL techniques Conclusion

Kuang D et al., [57] 2014 China fMRI
Deep Belief Network 

(DBN)
DBN model demonstrated impressive capability 

in accurately discriminating ADHD. 

Deshpande G et al., [58] 2015 USA fMRI
Fully Connected Cascade 
Artificial Neural Network 

(FCC ANN)

FCC ANN achieved nearly 90% accuracy in 
distinguishing ADHD from healthy controls and 
around 95% in differentiating ADHD subtypes.

Hao AJ et al., [59] 2015 China fMRI DBN 
DBN model effectively identified patterns 

associated with ADHD, demonstrating a high 
level of classification accuracy.

Chen H et al., [60] 2019 China EEG CNN
Results indicated an accuracy of approximately 
90.29%, confirming the effectiveness of CNN 

for identifying ADHD.

Mao Z et al., [61] 2019 China fMRI
Spatio-temporal DL 

method

Method utilising the public dataset from the 
ADHD-200 Consortium clearly surpassed 

traditional approaches, achieving an impressive 
accuracy of 71.3%.

Vahid A et al., [62] 2019 Germany EEG EEG Net
Model excelled in distinguishing ADHD patients 
from healthy controls, reaching a remarkable 

accuracy of up to 83%.

Dubreuil-Vall L et al., [63] 2020 USA fMRI CNN
Identification of key EEG features in ADHD 

patients, such as decreased alpha power and 
increased delta-theta power.
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Riaz A et al., [64] 2020 UK fMRI Deep fMRI
Study underscored the vital role of functional 

connectivity in enhancing classification 
accuracy and delivered interpretable results.

Garcia-Argibay M et al., 
[65]

2023 Sweden Registry data
Deep Neural Network 

(DNN)

DNN model demonstrated exceptional 
discriminative ability, positioning it as a powerful 

tool for improving decision-making.

Taspinar G and Ozkurt 
N [66]

2024 Turkey rs-fMRI CNNs and DNNs

The study emphasised the importance of 
examining all stages of the process, such as 

network and atlas selection, feature extraction, 
and feature selection, before classification. 

Nouri A and Tabanfar 
Z [67]

2024 Iran EEG
CNN and Layer-Wise 

Relevance Propagation 
(LRP)

The proposed method achieved a high 
accuracy of 94.52% in diagnosing ADHD. 

Oyashi AS et al., [68] 2025 Bangladesh rs-fMRI

Neural Network, Support 
Vector Machine (SVM), 
and a Random Forest 

classifier

The neural network, Random Forest classifier 
and SVM achieved an accuracy of 97%, 50% 

and 83%, respectively.

[Table/Fig-3]:	 Definitive highlights of DL techniques for neuroimaging in ADHD [57-68].

Author
Year of 

publication
Country of 
publication

Neurological 
conditions

Data from imaging 
modality DL techniques Conclusion

Ceschin R et 
al., [70]

2018 USA Cerebellar dysplasia
sMRI

(structural MRI)
3D CNN

Approach demonstrated considerable promise 
for the early identification of neurodevelopmental 

disorders.

Zhang J et al., 
[71]

2020 China Conduct disorder sMRI 3D CNN
3D CNN-based approach showed significant potential 
for classifying conduct disorder using structural MRI 

data.

Zahia S et al.,  
[72]

2020 Spain
Developmental 

dyslexia Task MRI 3D CNN
3D-CNNs accurately classified dyslexia using fMRI 
data, effectively distinguishing dyslexic individuals 

from non dyslexic individuals.

Attallah O et 
al., [73]

2020 Egypt
Embryonic 

neurodevelopmental 
disorder

sMRI CNN

The approach demonstrated efficacy in identifying 
ends across a range of gestational ages and 

exhibited competitive performance relative to existing 
methods.

Menon SS et 
al., [74]

2021 USA
Disruptive behaviour 

disorder

sMRI, rsfMRI, 
Diffusion Tensor 

Imaging (DTI)
3D CNN

Results indicated that the proposed approach can 
effectively identify children with Disruptive Behaviour 

Disorders (DBDs).

Scheinost D et 
al., [75]

2023 USA
Cognitive and motor 

delays
Diffusion Tensor 

Imaging (DTI)

Recurrent 
Neural 

Networks 
(RNNs) and 

LSTMs

DL enabled predictive insights into brain development. 
While models like CNNs and RNNs showed promise 

in forecasting cognitive and motor outcomes, 
challenges in data consistency.

Alkhurayyif Y 
and Sait ARW 
[76]

2023 Saudi Arabia Dyslexia  fMRI CNN
The proposed model achieved an impressive 

accuracy of 98.9% and an F1-score of 99.0%.

Ortega-Leon A 
et al., [77]

2025 Spain Cognitive deficits fMRI
Multimodal data 

modal

The study highlighted the limitations of current 
approaches and underscores the importance of 
employing multimodal data models to improve 

early identification and intervention strategies for 
Neurodevelopmental Impairments (NDIs) in premature 

infants.

[Table/Fig-4]:	 Definitive highlights of DL techniques for neuroimaging in other neurological disorders [70-77]

resources for autism research, providing extensive neuroimaging 
data of subjects diagnosed with ASD. However, a significant 
limitation of ABIDE is the aggregation of data from multiple sites, 
which use different scanners, acquisition parameters, and include 
demographic variability. These site-specific effects introduce both 
linear and non linear confounds, which can obscure or mimic 
biological variations, leading to biased estimations and reduced 
reliability of results [78].

Participant recruitment within ABIDE datasets is often not diverse, 
with economic status, race, and ethnicity frequently underreported. 
This demographic homogeneity can prevent disadvantaged 
groups from benefiting from research and limits the generalisability 
of findings, potentially reinforcing preconceptions about brain–
behaviour relationships [79,80]. Statistical biases, including inflated 
effect sizes due to multiple measurements, subjective reporting, and 
confounded parameters, can further affect neuroimaging studies 
using ABIDE. Even with a relatively large dataset, the limited number 
of cases at individual sites may reduce overall reliability [81,82].

ABIDE preprocessed datasets provide data that have undergone 
a sequence of predetermined processing steps. They are available 
for immediate analysis and include features such as connection 

matrices, ROI time series, and quality control metrics. Although 
ABIDE preprocessed datasets offer standardised and validated 
data, the choice of preprocessing methods can influence final 
results [83,84].

Similarly, the National Database for Autism Research (NDAR) is 
a large repository of neuroimaging and ancillary data, facilitating 
research on various aspects of autism [85]. However, differences 
in technology and data collection procedures across multiple sites 
introduce non biological variation, which can obscure or confound 
signals of interest. These site effects are often so strong that scans 
are best assigned to their original dataset, reflecting dataset-specific 
biases [86,87].

If not adequately controlled, variables such as sex, age, and brain 
size can render neuroimaging analyses inconclusive [82]. While 
NDAR contains a vast overall dataset, the limited number of cases in 
specific subgroups (e.g., particular ages, racial/ethnic populations, 
or individual traits) compromises the strength and generalisability of 
subgroup analyses [80,88].

As a premier resource for typically developing children and 
adolescents, the Paediatric Imaging, Neurocognition, and Genetics 
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The absence of standardised guidelines and protocols for DL in 
paediatric neuroimaging is another major limitation. Variations in 
preprocessing and imaging protocols create inconsistencies in data 
acquisition and analysis, which can only be addressed through 
uniform approaches. The lack of standard protocols also hampers 
comparability and reproducibility across studies, limiting the 
development of reliable and generalisable DL models. Therefore, 
the establishment of standard procedures is crucial to enhance the 
utility and reliability of research in this field [99].

Applying DL algorithms to paediatric neuroimaging also raises 
serious privacy and ethical concerns. The analysis of sensitive 
medical data must be conducted in strict accordance with ethical 
principles and legal requirements to maintain patient confidentiality 
[100,101].

DL algorithms can efficiently process large and complex 
datasets, uncovering hidden patterns in imaging data that may be 
overlooked by human observers. These algorithms can identify 
relationships between brain anatomy, functional properties, and 
responses to rehabilitation interventions, enabling the creation 
of highly personalised rehabilitation protocols tailored to each 
child’s neurological profile. By optimising the use of therapeutic 
resources, such interventions can be both effective and 
efficient.

CONCLUSION(S)
DL has revolutionised paediatric neuroimaging by providing 
unprecedented precision and efficiency in identifying and treating 
neurodevelopmental disorders in children. Advanced technologies 
such as CNNs and GANs have significantly improved the detection 
of brain abnormalities, offering valuable insights into the anatomical 
and functional characteristics of the developing brain. Ultimately, 
the integration of these technologies into clinical practice has the 
potential to enhance the quality of care for paediatric patients, drive 
continued advancements, and ensure that these transformative 
tools are fully realised in healthcare settings.
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